The solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentration which is due to hopping conduction
In this work the structural, electrical and optical Properties of CuO semiconductor films had been studied, which prepared at three thickness (100, 200 and 500 nm) by spray pyrolysis method at 573K substrate temperatures on glass substrates from 0.2M CuCl2•2H2O dissolved in alcohol. Structural Properties shows that the films have only a polycrystalline CuO phase with preferential orientation in the (111) direction, the dc conductivity shows that all films have two activation energies, Ea1 (0.45-0.66 eV) and Ea2 (0.055-.0185 eV), CuO films have CBH (Correlated Barrier Hopping) mechanism for ac-conductivity. The energy gap between (1.5-1.85 eV).
A progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath.
... Show MoreThe effect of annealing temperature (Ta) on the electrical properties like ,D.C electrical conductivity (σ DC), activation energy (Ea),A.C conductivity σa.c ,real and imaginary (ε1,ε2) of dielectric constants ,relaxation time (τ) has been measured of ZnS thin films (350 nm) in thickness which were prepared at room temperature (R.T) using thermal evaporation under vacuum . The results showed that σD.C increases while the activation energy values(Ea) decreases with increasing of annealing temperature.(Ta) from 303- 423 K .
The density of charge carriers (nH) and Hall mobility (μH) increases also with increasing of annealing temperature Hall effect measurements showed that ZnS films were n-type converted to p-type at high annealin
Abstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreQuantum calculations on the most stable structure were carried
out for calculating the electronic properties, energies and the charge
density at the Carbon and Hydrogen atoms by Semi-empirical
method (PM3) of zigzag carbon nano tube CNT (9,0) (SWCNTs), at
the equilibrium geometry depending on the pictures of Zigzag
CNT(9,0) which was found to has D3d symmetry point group by
applying for (Gaussian 2003) program. In this work the results
include calculation the relation for axial bonds length, which are the
vertical C-C bonds (annular bonds) in the rings and bonds length
which are in the outer ring that called the circumferential bonds. Also
include a different kind of vibration modes like breathing, puckering
The electrical properties of CdO/porous Si/c-Si heterojunction prepared by deposition of CdO layer on porous silicon synthesized by electrochemical etching were studied. The structural, optical, and electrical properties of CdO (50:50) thin film prepared by rapid thermal oxidation were examined. X-ray diffraction (XRD) results confirmed formation of nanostructured silicon layer the full width half maximum (FWHM) was increased after etching. The dark J-V characteristics of the heterojunction showed strong dependence on etching current density and etching time. The ideality factor and saturation current of the heterojunction were calculated from J-V under forward bias. C-V measurements confirmed that the prepared heterojunctions are abrupt
... Show MoreIn this work, the superconducting CuBa2LaCa2Cu4O11+δ compound was prepared by citrate precursor method and the electrical and structural properties were studied. The electrical resistivity has been measured using four probe test to find the critical temperature Tc(offset) and Tc(onset). It was found that Tc (offset) at zero resistivity has 101 K and Tc (onset) has 116 K. The X-ray diffraction (XRD) analysis exhibited that a prepared compound has a tetragonal structure. The crystal size and microscopic strain due to lattice deformation of CuBa2LaCa2Cu4O11+δ were estimated by four methods, namely Scherer(S), Halder-Wagner(H-W), size-strain plot (SSP) and Williamson-Hall, (W-H) methods. Results of crystal sizes obtained by these meth
... Show MoreIn this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show MoreFunctionally graded materials (FGMs), with ceramic –ceramic constituents are fabricated using powder technology techniques. In this work three different sets of FGMs samples were designed in to 3 layers, 5 layers and 7 layers. The ceramic constituents were represented by hard ferrite (Barium ferrite) and soft ferrite (lithium ferrite). All samples sintered at constant temperature at 1100oC for 2 hrs. and characterized by FESEM. Some physical properties were measured for fabricated FGMs include apparent density, bulk density, porosity, shrinkage and hardness. The results indicated that the density increase with the increase the number of layer. Lateral shrinkage is one of the important parameter f
... Show MoreAn electrochemical sensor based on manganese dioxide nanorodMnO2and Graphene oxide (GO) functionalized with 4-amino, 3-substituted 1H, 1, 2, 4 Triazole 5(4H) thion (FGO)/MnO2Nanocompositewas developed for voltammetric determination of Tetracycline (TET).The working electrode WE of SPCE was modified bya drop casting method. X-ray powder diffractometer (XRD), scanning electron microscopy (SEM) and FT-IR were employed to characterize the synthesized FGO/MnO2. The determination of TET at the modified electrode was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in the phosphate buffer solution (PBS).TET show sharp increase in the oxidation peaks in the pH 2.Voltammetric characteristics of TET (Epa, Ipa) were estimate
... Show More