This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
Let M be a n-dimensional manifold. A C1- map f : M M is called transversal if for all m N the graph of fm intersect transversally the diagonal of MM at each point (x,x) such that x is fixed point of fm. We study the minimal set of periods of f(M per (f)), where M has the same homology of the complex projective space and the real projective space. For maps of degree one we study the more general case of (M per (f)) for the class of continuous self-maps, where M has the same homology of the n-dimensional sphere.
In this paper, we introduced some new definitions on P-compact topological ring and PL-compact topological ring for the compactification in topological space and rings, we obtain some results related to P-compact and P-L compact topological ring.
Let be a unitary left R-module on associative ring with identity. A submodule of is called -annihilator small if , where is a submodule of , implies that ann( )=0, where ann( ) indicates annihilator of in . In this paper, we introduce the concepts of -annihilator-coessential and - annihilator - coclosed submodules. We give many properties related with these types of submodules.
The peristaltic flow of Walter's B fluid through an asymmetric channel is analyzed. The constitutive equation for the balance of mass, momentum, trapped phenomena, and velocity distribution is modeled. Consideration of low Reynolds number and long wavelength assumption are used in the flow analysis to get an exact solution by using the perturbation method. The impact of impotent parameters on stream function and axial velocity has been gained. The set of figures is graphically analyzed of these parameters.
Most of today’s techniques encrypt all of the image data, which consumes a tremendous amount of time and computational payload. This work introduces a selective image encryption technique that encrypts predetermined bulks of the original image data in order to reduce the encryption/decryption time and the
computational complexity of processing the huge image data. This technique is applying a compression algorithm based on Discrete Cosine Transform (DCT). Two approaches are implemented based on color space conversion as a preprocessing for the compression phases YCbCr and RGB, where the resultant compressed sequence is selectively encrypted using randomly generated combined secret key.
The results showed a significant reduct
In this paper, a discrete- time ratio-dependent prey- predator model is proposed and analyzed. All possible fixed points have been obtained. The local stability conditions for these fixed points have been established. The global stability of the proposed system is investigated numerically. Bifurcation diagrams as a function of growth rate of the prey species are drawn. It is observed that the proposed system has rich dynamics including chaos.
We develop the previously published results of Arab by using the function under certain conditions and using G-α-general admissible and triangular α-general admissible to prove coincidence fixed point and common fixed point theorems for two weakly compatible self –mappings in complete b-metric spaces.
This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreIn this research, the effect of the rotation variable on the peristaltic flow of Sutterby fluid in an asymmetric channel with heat transfer is investigated. The modeling of mathematics is created in the presence of the effect of rotation, using constitutive equations following the Sutterby fluid model. In flow analysis, assumptions such as long wave length approximation and low Reynolds number are utilized. The resulting nonlinear equation is numerically solved using the perturbation method. The effects of the Grashof number, the Hartmann number, the Hall parameter, the magnetic field, the Sutterby fluid parameter, and heat transfer analysis on the velocity and the pressure gradient are analyzed graphically. Utilizing MATHEMATIC
... Show MoreThe analysis of COVID-19 data in Iraq is carried out. Data includes daily cases and deaths since the outbreak of the pandemic in Iraq on February 2020 until the 28th of June 2022. This is done by fitting some distributions to the data in order to find out the most appropriate distribution fit to both daily cases and deaths due to the COVID-19 pandemic. The statistical analysis includes estimation of the parameters, the goodness of fit tests and illustrative probability plots. It was found that the generalized extreme value and the generalized Pareto distributions may provide a good fit for the data for both daily cases and deaths. However, they were rejected by the goodness of fit test statistics due to the high variability of the data.<
... Show MoreThis paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.
The problem of reconstruction of a timewise dependent coefficient and free boundary at once in a nonlocal diffusion equation under Stefan and heat Flux as nonlocal overdetermination conditions have been considered. A Crank–Nicolson finite difference method (FDM) combined with the trapezoidal rule quadrature is used for the direct problem. While the inverse problem is reformulated as a nonlinear regularized least-square optimization problem with simple bound and solved efficiently by MATLAB subroutine lsqnonlin from the optimization toolbox. Since the problem under investigation is generally ill-posed, a small error in the input data leads to a huge error in the output, then Tikhonov’s regularization technique is app
... Show MoreIn this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul
... Show MoreGiven that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every one of the solution’s qualitative attributes is included. According to the established basic reproductio
... Show MoreWe introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let
In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point
... Show MoreLet be a commutative ring with 1 and be a left unitary . In this paper, the generalizations for the notions of compressible module and retractable module are given.
An is termed to be semi-essentially compressible if can be embedded in every of a non-zero semi-essential submodules. An is termed a semi-essentially retractable module, if for every non-zero semi-essentially submodule of an . Some of their advantages characterizations and examples are given. We also study the relation between these classes and some other classes of modules.
The aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to veri
... Show MoreComplex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.
This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
The aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theore
... Show MoreIn the current paper, the effect of fear in three species Beddington–DeAngelis food chain model is investigated. A three species food chain model incorporating Beddington-DeAngelis functional response is proposed, where the growth rate in the first and second level decreases due to existence of predator in the upper level. The existence, uniqueness and boundedness of the solution of the model are studied. All the possible equilibrium points are determined. The local as well as global stability of the system are investigated. The persistence conditions of the system are established. The local bifurcation analysis of the system is carried out. Finally, numerical simulations are used t
In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].