Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste replacement and increased by 11.16% and 19.86% for 5% and 10% silica sand replacement. Splitting tensile strength decreased by 12.74% and 20.22% for 10% and 20% plastic waste replacement and increased by 10.86% and 19.66% for 5% and 10% silica sand replacement. Dry density decreased by 4.51% and 7.83% for 10% and 20% plastic waste replacement and increased by 2.78% and 4.10% for 5% and 10% silica sand replacement respectively at 28 days.
Current design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the
... Show MoreBackground: The aim of this study was to evaluate the effect of thermo cycling and different pH of artificial saliva (neutral, acidic, basic) on impact and transverse strength of heat cure acrylic resin reinforced of with 5% silanated ZrO2 nano fillers. Materials and methods: 120 samples were prepared, 60 samples for impact strength test and another 60 samples for transverse strength test, for each test, samples were divided into two major groups (before and after thermo cycling), then each of these major groups were further subdivided into 3 subgroups according to the pH of prepared artificial saliva (neutral, acidic, basic). Charpy impact device was used for impact strength test and Flexural device was used for transverse strength test. R
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended
... Show MoreThis research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively
Fluidization process is widely used by a great assortment of industries worldwide and represents a trillion dollar industry [6]. They are currently used in separation, classification, drying and mixing of particles, chemical reactions and regeneration processes; one of these processes is the mass transfer from an immersed surface to a gas fluidized bed
Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within
... Show MoreIn this work, a ceramic model has obtained from Iraqi bentonite as a base material with limited additions of alumina and silica. The selected material can bear temperatures higher than the bearing temperature of bentonite as it achieved tolerance temperatures (1300°C) based on X-ray diffraction patterns. It was found that the addition of alumina and silica led to the occurrence of basic phases such as mullite, quartz, cordierite and feldspar in percentages that depended on the percentage of addition in the mixture and the firing temperature, which was (1000-1300)°C.