The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample sizes (50, 100, 200). A comparison between non-linear SVM and two standard classification methods was illustrated using various compared features. Our study has shown that the non-linear SVM method gives better results by checking: sensitivity, specificity, accuracy, and time-consuming. © 2024 Author(s).
The parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to ind
The purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad. The main conclusions of the study were, This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes. Where h
... Show MoreThe general objective of the research is to better understand changes in land cover and their impact on climatic factors by measuring changes in land cover for the Baghdad city for the period 1999-2021 and evaluating changes in land cover and measuring changes in climatic factors (relative humidity and evaporation). This study from 1999 to 2021 and in two different seasons: the April of the growing season and August the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes, the study showed the spatial variations in LC from 1999 to 2021 as follows: increase in the vegetation and water bodies during April and decrease this in August while the soil and built up decreas
... Show MoreThis study aims to Statement of the relationship between Total Quality Management philosophy and Organizational performance from the point of view of the internal customer. A comparison has been made between two companies, one of which applies the requirements of TQM well and the other does not apply these requirements as the (General Company for Electrical Industries/ Diyala) and (General Company for Electrical Industries/ Baghdad) to conduct the search, During the questionnaire prepared for this purpose and distributed to a sample of 30 employees in the General Company for Electric Industries/ Diyala and (20) employees of the General Company for Electrical Industries/ Baghdad. Their answers were analyzed using a simple correlation coef
... Show MoreIn this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreThis Book is intended to be a textbook studied for undergraduate course in financial statistics/ department of Financial Sciences and Banking. This book is designed to be used in semester system. To achieve the goals of the book, it is divided into the following chapters. Chapter one introduces basic concepts. Chapter two devotes to frequency distribution and data representation. Chapter three discusses central tendency measures (all types of means, mode, and median). Chapter four deals with dispersion Measures (standard deviation, variance, and coefficient of variation). Chapter five concerned with correlation and regression analysis. While chapter six concerned with testing Hypotheses (One population mean test, Two "independent" populati
... Show MoreBis-anthraquinones with a unique molecular backbone, (+)-2,2’-epicytoskyrin A (epi) and (+)-1,1′-bislunatin (bis), was produced by endophytic fungi Diaporthe sp GNBP-10 associated with Gambir plant (Uncaria gambier). Epi and bis possess robust antimicrobial activity toward various pathogens. This study focus on knowing the optimum condition of epi and bis production from Diaporthe sp GNBP-10. A series of culture media with various nutrient compositions was investigated in epi and bis production. The content of epi and bis was determined by measuring the area under the curve from TLC-densitometric (scanner) experiment. The linear regression analysis was then applied to obtain the results. The optimi
... Show MoreIn this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.