In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increased by 11%, 11.5%, and 14% after 3, 7, and 28 days when utilizing fibers. The result shows that fly ash with a ratio of 50% by weight of slag improved the compressive strength of the mixture. It was discovered that a combination with 50% of the weight of fly ash with micro steel fibers, when treated at 240oC for curing age of 3, 7, and 28 days, had a flexural resistance rate of 28%, 30%, 33% higher than a mixture without fibers.
The research (Anthropology and Representations of magic in Arab Theatrical Text, Harut and Marut's play as a Model) is concerned with studying magic and the forms of its presence in the theatrical text in different human cultures where it belongs. The research consists of four chapters.
The first chapter includes the research problem that revolves around the following questions: (what is the mechanism of employing magic anthropology and its representations in the Arab theatrical text Harut and Marut's play as a model?), and the research importance which is attributed to the necessity of studying (magic) in the Arab theatrical text as it is considered the inauguration of one of the social phenomena that many researchers in the field o
This paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show MoreBackground: Oral Lichen Planus (OLP) is a chronic inflammatory mucosal disease, presenting in various clinical forms WHO had regarded OLP as a precancerous conditions in 1978 because of its potential with cancer. Both antigen-specific and nonspecific mechanisms involved in the pathogenesis of OLP. Oral Squamous Cell Carcinoma (OSCC) is the most common malignant neoplasm of the oral cavity representing more than 94% of oral cancer. It occurs in different sites and has many etiological factors. Cyclin Dl is a proto-oncogene which consider as the key protein in the regulation of cell proliferation and its overexpression led to the occurrence and progression of malignant tumors.NF-KB p65 is a member ofNF-kB family of transcription factors that
... Show MoreReverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCG
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show Moreالانهار اصبحت مشبعة بثاني اوكسيد الكربون بشكل عالي وبذلك فهي تلعب دور مهم في كميات الكربون العالمية. لزيادة فهمنا حول مصادر الكربون المتوفرة في النظم البيئية النهرية، تم اجراء هذه الدراسة حول تأثير الكربون العضوي المذاب والحرارة (العوامل الرئيسية لتغير المناخ) كمحركات رئيسية لوفرة ثاني اوكسيد الكربون في الانهار. تم جمع العينات من خمسة واربعون موقع في ثلاثة اجزاء رئيسية لنهر دجلة داخل مدينة بغداد خلال فص
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreTo evaluate the shear bond strength and interfacial morphology of sound and caries-affected dentin (CAD) bonded to two resin-modified glass ionomer cements (RMGICs) after 24 hours and two months of storage in simulated body fluid at 37°C.
Sixty-four permanent human mandibular first molars (32 sound and 32 with occlusal caries, following the International Caries Detection and Assessment System) were selected. Each prepared substrate (sound and CAD) was co