The standard formulation of Wave Intensity Analysis (WIA) assumes that the flow velocity (U) in the conduit is <;<; the velocity of propagation of waves (c) in the system, and Mach number, M=U/c, is negligible. However, in the large conduit arteries, U is relatively high due to ventricular contraction and c is relatively low due to the large compliance; thus M is > 0, and may not be ignored. Therefore, the aim of this study is to identify experimentally the relationship between M and the reflection coefficient in vitro. Combinations of flexible tubes, of 2 m in length with isotropic and uniform circular cross sectional area along their longitudinal axes, were used to present mother and daughter tubes to produce a range of reflection coefficients. An approximately semi-sinusoidal pulse was generated at the inlet of the mother tube using a syringe pump, first in the condition of initial velocity, U 0 =0, and when U 0 >0 with steady flow to superimpose the pulse. Pressure (P) and Velocity (U) were measured in the mother tube, wave speed was determined using the foot to foot and PU-loops methods. The theoretical reflection coefficient, R t at M=0, has been compared to the experimental reflection coefficient, R at M>0, which was determined as dP-/dP+ as calculated using WIA. The function R(M) changes significantly with the geometrical and mechanical features of the connected tubes. In our experiments, R increased significantly with small values of M. In the range of M=0-0.02, R increased by 4-36%. Therefore, we conclude that M significantly affects the magnitude of reflections.
In this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreCommercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study,
... Show MoreThe disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreThis study was design to investigate the dimensional stability of heat-activated acrylic resin with different methods of flask cooling (15 minutes rapid cooling, one hour bench cooling, four hours delayed deflasking, and 24 hours delayed deflasking) at different time intervals (immediately, two days, seven days, 30 days) after deflasking. Heat-activated acrylic resin was used to prepare acrylic samples. Then, measurement of the distances where achieved between the centers of selected marks in the acrylic samples. They were measured at different time intervals for different methods of flask cooling. The results showed that the group samples of the four hours and 24 hours of delayed deflasking was insignificantly different from the control an
... Show MoreTen isolates of Klebsiella pneumoniae, seven isolates of Pseudomonas aeruginosa and nine isolates of Staphylococcus aureus, were obtained from 100 urine samples collected from Baghdad hospitals. All isolates were identified biochemically and confirmed by using VITEK 2 and were then tested for their susceptibility towards 6 antibiotics and for phenolic extracts of Thymus vulgaris and Cinnamomum cassia. All bacteria were greatly affected by T. vulgaris, especially K. pneumoniae. Viable count was performed, it was noted that the number of bacterial cells reduced from 1×108 CFU to 1.2× 103, 2×105 and 1.8×106CFU of K. pneumoniae, P. aeruginosa and S. aureus respectively. While C. cassiahad a slight effect on them. K. pneumoniae isola
... Show MoreA Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated vi
... Show More