The cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98% of harvesting efficiency can be obtained. The results also demonstrated that the power consumption with the graphite anode is higher than that of aluminum. However, at 0.2 A the local cost of operation with graphite (0.036 US$/m3) is distinctly lower than that of aluminum (0.08 US$/m3). Furthermore, the harvesting efficiency reached its higher value at short electrolysis time at an initial pH of 6 for aluminum, and at an initial pH of 4 for graphite. Consequently, the power consumption of the harvesting process could be reduced at acid- nature conditions to around 0.46 kWh/kg for aluminum and 1.12 kWh/kg for graphite.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
The research included preparation of new iron(II) complexes with mixed ligands including benzilazine(BA) and semicarbazone ligands {benzilsemicarbazone- BSCH or benzilbis(semicarba-zone)- BBSCH2 or salicylaldehydesemicarbazone- SSCH2 or benzoinsemicarbazone- B'SCH2}.by classical and microwave methods. The resulted complexes have been characterized using chemical and physical methods. The study suggested that the above ligands form ionic complexes having formulae [Fe(SCHi)(BA)(Cl)m](Cl)2-m {where SCH, BSCH, BBSCH2, SSCH¬2 or B'SCH2 ligands; m=1 or 2}. Hexacoordinated mononuclear complexes have been investigated by this study and having octahedral geometries. The effect of laser ray type visible region have been studied on solid ligands and
... Show MoreRetreatment Efficacy of Continuous Rotation Versus Reciprocation Kinematic Movements in Removing Gutta-Percha with Calcium Silicate-Based Sealer: SEM Study, Raghad Noori Nawaf*, Ra
The main goal of the current research is to know -Environmental problems included in the content of the two science books (chemistry units) for intermediate stage
A list of environmental problems had been prepared and consisting of (8) main areas which are (air and atmosphere pollution, water pollution, soil pollution, energy, disturbance of biodiversity and environmental balance, waste management, food and medicinal pollution, investment of mineral wealth). Of which (60) sub-problems, at that time the researcher analyzed the two science books (two chemistry units) for the intermediate stage of the academic year (2020-2021) in light of the list that was prepared, and the validity and consisten
... Show MoreThis study aimed to investigate the effect of total suspended solids (TSS) on the performance of a continuously operated dual-chamber microbial fuel cell (MFC) proceeded by primary clarifier to treat actual potato chips processing wastewater. The system was also tested in the absence of the primary clarifier and the results demonstrated a significant effect of TSS on the polarization curve of the MFC which was obtained by operating the graphite anodic electrode against Ag/AgCl reference electrode. The maximum observed power and current densities were decreased form 102.42 mW/m2 and 447.26 mA/m2 to 80.16 mW/m2 and 299.10 mA/m2, respectively due to the adverse effect of TSS. Also
... Show MoreRESRAD is a computer model designed to estimate risks and radiation doses from residual radioactive materials in soil. Thirty seven soil samples were collected from the area around the berms of Al-Tuwaitha site and two samples as background taken from an area about 3 km north of the site. The samples were measured by gamma-ray spectrometry system using high purity germanium (HPGe) detector. The results of samples measurements showed that three contaminated area with 238U and 235U found in the study area. Two scenarios were applied for each contaminated area to estimate the dose using RESRAD (onsite) version 7.0 code. The total dose of resident farmer scenario for area A, B and C are 0.854, 0.033 and 2.15×10-3 mSv.yr-1, respectively. Whi
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreWater has a great self-generating capacity that can neutralize the polluting interventions carried out by humans. However, if human activities continue this uncontrolled and unsustainable exploitation of this resource, this regenerating capacity shall fail and it will be jeopardized definitively. Shatt Al-Arab River in South of Iraq. It has an active role in providing water for irrigation, industry, domestic use and a commercial gateway to Iraq. in the last five years Shatt Al-Arab suffered from a rise in pollutants due to the severe decline in sewage networks, irregular networks and pesticide products, as well as the outputs of factories and companies that find their way to water sources and lead to a widespread collapse of water quality.
... Show More