Preferred Language
Articles
/
bsj-6210
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers.  The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively.  These evolutionary-based algorithms are known to be effective in solving optimization problems.  The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated.  The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features.  The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively.  The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 30 2016
Journal Name
Al-kindy College Medical Journal
Detection similarity and differences between Uropathogenic Escherichia coli isolated from recurrent urinary tract infections and bladder cancer patients
...Show More Authors

Background: Urinary tract infections (UTIs) and their complications such as Bladder cancer (Bl. C.) are a health growing problem worldwide. Objective: To shed light on this subject, present study was done to investigate relationship between recurrent urinary tract infection (RUTI) due to Escherichia coli (E. coli) and Bl. C.Type of study: Cross-sectional study. Methods: This study included 130 patients with RUTI, 50 patients with Bl. C. and 50 control of both sexes (aged 7-85 years) attending Al-Zahra Teaching Hospital in Al-Kut/Wassit governorate and Al-Harery Teaching Hospital of specialized surgeries/Baghdad. The patients were divided into two groups: the first group (n=130) included those who were suffering from recurrent UTI without

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Simultaneous Ratio Derivative Spectrophotometric Determination of Paracetamol, Caffeine and Ibuprofen in Their Ternary Form
...Show More Authors

A new, accurate, precise and economic two spectrophotometric methods for determination of Paracetamol (Par), Ibuprofen (Ibu), and Caffeine (Caf) were suggested. Those methods were the first and second ratio derivative spectrum using a double devisor. Par, Ibu, and Caf showed many useful peaks for their quantified determination. The validity of all analysis modes for determination of the three compounds, peak to baseline, peak area and peak to peak were according to ICH. The linearity of two methods was between 5 µg/ml as a lower concentration and 50 µg/ml as the highest concentration for three compounds. Recovery percentage was around 100% and relative standard deviation was less than 2.6%. The methods were applied successfully in the

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Study the Ability of Pseudomonas Aeruginosa Isolated from Different Clinical Cases to Biofilm Formation and Detection of Algd Gene.
...Show More Authors

98 samples were collected from various clinical sources included (Burns, wounds, urines, sputums, blood) From the city of Baghdad, After performing the biochemical and microscopic examination, 52 isolates were obtained for Pseudomonas aeruginosa, 17 (32.7%) isolates from burn infection, 12 (23%) isolates from Wound infection 11 (21.2%) isolates from urine infection, 7 (13.5%) isolates of sputum and 5 (9.6%) isolates from blood. Bacteria susceptibility to form biofilm has been detectedby microtiter plate method, The results showed that 80% of the bacterial isolates were produced the biofilm with different proportions, alg D gene (alginate production) has been detected by polymerase chain reaction (PCR) Which plays an essential role in the fo

... Show More
Publication Date
Sun Feb 12 2017
Journal Name
World J Exp Biosc
Detection and sequencing of blaVEB-1 gene in clinical isolates of Proteus mirabilis Isolates from Baghdad City`s hospitals
...Show More Authors

In Present study, 25 clinical isolates of Proteus spp. of clinical samples, urine, wounds and burns collected from different hospitals in Baghdad city, all isolates were identified as Proteus mirabilis using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifying as P. mirabilis. The susceptibility of P. mirabilis isolates to cefotaxime was 66.6 %, while to ceftazidime was 20%. Extended spectrum β-lactamses producing Proteus was 30.7 %. DNA of 5 isolates of P. mirabilis was extracted and detection for blaVEB-1 gene by using multiplex polymerase chain reaction (PCR). Results showed that the presence of this gene in all tested isolates, as an important indicator for increas

... Show More
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Detection of RAF fusion transcripts in FFPE samples of Medullablastoma and Ependymom in Iraqi children with RT-RQPCR assays
...Show More Authors

Medulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ep

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Modified Opposition Based Learning to Improve Harmony Search Variants Exploration
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Tue Dec 11 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Assessment of the Efficiency for some Disinfectants Against the Microorganisms Isolated From the Wards of Newborn and Premature Babies in Baghdad Teaching Hospital
...Show More Authors

Objective : To assess the efficiency for some disinfectants against the microorganisms isolated from
the wards of newborn and premature babies in Educational Baghdad Hospital .
Methodology :This study had done from 1\8\2014 untile 1\9\2014, we had selected three types of
disinfectants ( Incidine , Bleach and Microbac Forte )which were used for disinfection in the wards of
newborn babies at Educational Baghdad Hospital to assess their effect against the microorganisms
isolated from these wards and study the mixed affect of these disinfectants againt same
microorganisms .
Results : The results of the present study showed that there is affect of the different concentrations of
the used disinfectants against the micro

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
The Influence of NMI against Modularity in Community Detection Problem: A Case Study for Unsigned and Signed Networks
...Show More Authors

Community detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref