Nanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil–earthworm systems to compare the fate and uptake of analytical‐grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non‐nano treatments, whereas dissipation half‐lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more bifenthrin than those in the non‐nano treatments. In the non‐nano treatments, most of the accumulated material was found in the earthworm tissue, whereas in the nano treatments, the majority resided in the gut. Evaluation of toxicokinetic modeling approaches showed that models incorporating the release rate of bifenthrin from the nanocapsule and distribution within the earthworm provided the best estimations of uptake from the nano‐formulations. Overall, our findings indicate that the risks of nanopesticides may be different from those of conventional formulations. The modeling presented provides a starting point for assessing risks of these materials but needs to be further developed to better consider the behavior of the nanoencapsulated pesticide within the gut system.
This study evaluates the flexural behavior of ultra-thin (50 mm) one‑way reinforced‑concrete (RC) slabs retrofitted with near‑surface mounted (NSM) carbon‑fiber‑reinforced polymer (CFRP) rods under quasi‑static loading. T300‑grade CFRP rods (≈4 mm diameter) were bonded in pre‑cut 7 mm × 7 mm grooves using a two‑part epoxy. As a proof-of-concept experimental baseline, three simply‑supported specimens (1000 mm × 500 mm × 50 mm) were tested in a six‑point bending configuration (four applied loads + two reactions): two conventional controls and one strengthened slab. A load‑control rate of ~15 kN/min was applied; the controls were cycled twice and the strengthened slab four times. Relative to the average of
... Show MoreOptical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.
The interaction of interplanetary coronal mass ejections (ICME) with each other and with co-rotating interaction regions (CIR) changes their configuration, dynamics, magnetic field and plasma characteristics and can make space weather forecasting difficult. During the period of March 20–25, 2011, the Solar Terrestrial Relation Observatory (
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreThe present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%). After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL
... Show MoreIn this study, the photodegradation of Congo red dye (CR) in aqueous solution was investigated using Au-Pd/TiO2 as photocatalyst. The concentration of dye, dosage of photocatalyst, amount of H2O2, pH of the medium and temperature were examined to find the optimum values of these parameters. It has been found that 28 ppm was the best dye concentration. The optimum amount of photocatalyst was 0.09 g/75 mL of dye solution when the degradation percent was ~ 96 % after irradiation time of 12 hours, while the best amount of hydrogen peroxide was 7μl/75 mL of dye solution at degradation percent ~97 % after irradiation time of 10 hours, whereas pH 5 was the best value to carry out the reaction at the highest degradation percent. In additio
... Show MoreA rapid and sensitive method for analysis of amino acid hydrolysates of nigella sativa L seed has been developed using O-phthaldialehyde(OPA ) as a pre-column derivatizing agent. OPA reagents in the presence of mercaptoethanol react rapidly with primary amino acids ( less than 60 sec.) to form isindole derivatives which easily separated with good selectivity on ODS column. Resolution of amino acid derivatives is carried out with a methanol gradient in 0.01 maqueous sodium acetate. pH 7.1 . The quantitation of amino acid derivatives is reproducible within an average relative deviation of + 1.4% the linearity for most amino acids were more than 0.9993 with detection limit of 0.2 ppm. 15 amino acid were detected in the analysis of
... Show MoreZinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,
... Show More