Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
Cervical Uterine Cancer is a disease that explains the vulnerability in which women are in terms of reproductive health with an impact on occupational health and public health, even when in Mexico the prevalence rate is lower than the other member countries of the OECD, its impact on Human Development and Local Development shows the importance that the disease have in communities more than in cities where prevention policies through check-ups and medical examinations seem to curb the trend, but show the lack of opportunities and capacities of health centers in rural areas. To establish the reliability, validity, and correlations between the variables reported in the literature with respect to their weighting in a public hospital. A
... Show MoreThis study aimed to evaluate the preparedness and adherence of community pharmacists to the International Pharmaceutical Federation (FIP) Health Advisory COVID-19 guidelines for pharmacists (July 2020) during COVID-19 pandemic. This was a cross-sectional study based on electronic survey using google form, which was distributed from November 19, 2020 to January 1, 2021 using social media platforms. The survey measured 21 pharmacy preventive measures (PM). A multivariate regression analysis was used to identify factors influencing pharmacy implementing of PM. Hand disinfection after serving patients represented the main adopted measure (89.3%). Surprisingly, only 35.4% of participants implemented the proper ways of hand disinfection during fa
... Show MoreThis paper aims to identify the contents of the advertisements of the (Take the Vaccine .. to Protect Yourself) campaign that was carried out by the Iraqi Ministry of Health for the period from (11/19/2020) to (4/1/2022), to raise awareness of the anti-Covid 19 virus vaccines, which it published on its official page on Facebook. The researcher used a comprehensive inventory method for the research community, and used the content analysis tool.
... Show MoreIntroduction: COVID-19 vaccine have been indicated to successfully decrease the hazard for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection furthermore associated hospitalisations. Objective: To study the immune response among different types of SARS-CoV-2 vaccines. Methods: This study includes 100 vaccinated individuals (43 Sinopharm, 30 AstraZeneca and 27 Pfizer) with one or two doses from different health centres in Baghdad. During the period from April 2021 to the end of May 2021, SARS-CoV-2 IgG and SARS-CoV-2 IgM levels were detected using AFIAS-6 device depending on FIA (Fluorescence Immunoassay) technique. Results: 93% of the cases were positive for IgG levels, and negative in 7% case
... Show MoreThe Coronavirus Disease (COVID-19) has recently emerged as a human pathogen caused by SARS-CoV-2 virus was first reported from Wuhan, China, on 31 December 2019. Upon study, it has been used molecular docking to binding affinity between COVID-19 protease enzyme and flavonoids with evaluations based on docking scores calculated by AutoDock Vina. Results showed that naringin suppressed COVID-19 protease, as it has the highest binding value than other flavonoids including quercetin, hesperetin, garcina and naringenin. An important finding in this study is that naringin with neighboring poly hydroxyl groups can serve as inhibitors of COVID-19 protease bind to the S pocket of protein, it is shown that residues His163, Glu166, Asn142, His41and
... Show MoreNowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The prese
... Show More
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic worldwide. On a daily basis the number of deaths associated with COVID-19 is rapidly increasing. The main transmission route of SARS-CoV-2 is through the air (airborne transmission). This review details the airborne transmission of SARS-CoV-2, the aerodynamics, and different modes of transmission (e.g. droplets, droplet nuclei, and aerosol particles). SARS-CoV-2 can be transmitted by an infected person during activities such as expiration, coughing, sneezing, and talking. During such activities and some medical procedures, aerosols and droplets contaminated with SARS-CoV-2 particles are formed. Depending on their
... Show MoreSince the appearance of COVID-19 disease as an epidemic and pandemic disease, many studies are performed to uncover the genetic nature of the newly discovered coronavirus with unique clinical features. The last three human coronavirus outbreaks, SARS-CoV, MERS-CoV and SARS-CoV-2 are caused by Beta-Coronaviruses. Horizontal genetic materials transfer was proven from one coronavirus to the other coronavirus of non-human origin like infectious bronchitis virus (IBV) of avian. Horizontal genetic materials transfer was also from non-corona viruses like astroviruses and equine rhinovirus (ERV-2) or from coronavirus-unrelated viruses, like influenza virus type C. However, SARS-CoV-2 is identical to SARS-CoV and MERS-CoV. Interestingly, Wuhan ci
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show More