Forecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the prediction process when conducting simulations for the time series and for different sample sizes and when applying them on the daily crude oil price data, it was more efficient than the single models, as the comparison between the single models and the proposed hybrid models was done by means of the comparison scale, the mean square error (MSE), the results showed that the proposed hybrid models gave more accurate and efficient results, in addition to its ability to predict crude oil prices well.
Background: Considering the antioxidant, anti-inflammatory, and antimicrobial properties of green tea, this study aimed to evaluate the histopathological effect of the sulcular irrigation of green tea extract in the treatment of experimental gingivitis in rabbit.
Materials and methods: For this experimental study, 45 male rabbits, separated in two groups, control non- irrigated group (5rabbits) and study group (40 rabbits), gingivitis induced by ligatures was packed subgingivally in the lower right central incisors of the experimental group for seven days. Then, the animals were randomly designated to two irrigated groups (20 rabbits
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreA novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-
... Show More