In this research, the performance of asphalt mixtures modified with polyethylene polymer (PE) by adding 2%, 4%, and 6% percentages was evaluated. Two kinds of PE are employed: Low-Density PE (LDPE) and High-Density PE (HDPE). The semi-wet mixing technique (SWM) was conducted to avoid stability issue for PE-modified binder during storage condition. Many experimental tests were conducted to evaluate the ability of these mixtures to withstand the effects of loads and moisture. The hardness index of these mixtures was also measured to determine their resistance to the effects of high temperatures without causing permanent deformations. The results showed that adding PE led to a remarkable enhancement in the performance of PE-modified mixtures. The improvement in stability reached 113.36% when using HDPE and it was 86.19% for LDPE. For moisture resistance, it improved by 10.42% and 9.91% when using HDPE and LDPE, respectively. The modified mixtures also showed higher hardness index compared to the standard mixture. According to the outcomes of this research, it can be concluded that the optimum percentage for using PE polymer as a modifier in bitumen is 6% and HDPE is more effective than LDPE. Overall, the SWM is easier and more economical compared to the wet mixing.
Sustainability is providing the needs without compromising the ability of the strategical forming to meet their requirements. The production of warm asphalt mixtures using recycled pavements produces economic and environmentally friendly mixtures, which is the most important advantage of this work. This research aims to determine the effect of recycled asphalt concrete (RAP) on the indirect tensile strength of warm asphalt mixtures and Marshall Properties. Models of warm asphalt mixtures using Aggregate from the Al-Nibaay quarry, Asphalt with a degree of penetration (40-50) from the refinery of the cycle, and obtained Recycled asphalt concrete from Salah Al-Din Road, Al-Ameriya area in Baghdad are prepared. Use five rati
... Show MoreOne of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to stu
... Show MoreThe aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and o
The aim of this research work is to study the effect of stabilizing gypseous soil, which covers vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties to be used as a base course layer replacing the traditional materials of coarse aggregate and broken stones which are scarce at economical prices and hauling distances. Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%, medium curing cutback asphalt (MC-30), and hydrated lime are used in this study. The conducted tests on untreated and treated gypseous soil with different percentages of medium curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one dimensional confine
... Show MoreMoisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved
... Show MoreModified asphalt is considered one of the alternatives to address the problems of deficiencies in traditional asphalt concrete, as modified asphalt addresses many of the issues that appear on the pavement layers in asphalt concrete, resulting from heavy traffic and vehicles loaded with loads that exceed the design loads and the large fluctuations in the daily and seasonal temperatures of asphalt concrete. The current study examined the role of polyphosphoric acid (PPA) as a modified material for virgin asphalt when it was added in different proportions (1%, 2%, 3%, 4%) of the asphalt weight. The experimental program includes the volumetric characteristics associated with the Marshall test, the physical properties, and th
... Show MoreThe excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreReflective cracking is one of the primary forms of deterioration in pavements. It is widespread when Asphalt concrete (AC) overlays are built over a rigid pavement with discontinuities on its surface. Thus, this research work aims to reduce reflection cracks in asphalt concrete overlay on the rigid pavement. Asphalt Concrete (AC) slab specimens were prepared in three thicknesses (4, 5, and 6 cm). All these specimens were by testing machine designed and manufactured at the Engineering Consulting Office of the University of Baghdad to examine for the number of cycles and loads needed to propagate the reflection cracking in the asphalt concert mixture at three temperatures (20, 30, and 30°C). It was noticed that the higher thickness A
... Show More