Preferred Language
Articles
/
S-bmZ5wBmraWrQ4dG0kN
Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq
...Show More Authors

The electrical and thermal performance of a typical single pass hybrid photovoltaic/thermal (PV/T) air collector is modeled, simulated and analyzed for two selected case studies in Iraq. An improved mathematical thermo-electrical model is derived in terms of design, operating and climatic parameters of the hybrid solar collector to evaluate its important characteristics: collector flow and heat removal factors, PV maximum power point and its temperature coefficient, and overall power and efficiency. Unlike previous PV/T thermal models, the present model is obtained with some additions and corrections in radiation and convection heat coefficients for the top loss and for the air duct with more applicable sky temperature correlation. The well-known 5-parameter electrical model of PV module is solved using improved boundary conditions and translation equations for better convergence and accuracy. The voltage temperature coefficient of the PV module is included in the boundary conditions for convergence stability. The module parameters are taken to be dependent on solar radiation and PV cell temperature for improved accuracy. A Matlab computer simulation program is developed to solve the thermo-electrical model. The developed model is verified with previously published experimental results and theoretical simulations; it is proved to be most accurate in respect to percentage errors and correlation coefficients. Different parameters of the PV/T collector such as cell and air temperatures, thermal gain, PV current and voltage, and fill factor have been investigated. The results identified the effects of most important operating conditions such as sky, inlet and cell temperatures, air flow rate and incident solar radiation on the performance of the hybrid collector. The approved model is applied for a winter day (22 January 2011) in Baghdad city and for a summer day (20 May 2011) in Fallujah city. It is found that the electrical, thermal and overall collector efficiencies for the two case studies were 12.3%, 19.4% and 53.6% respectively for the winter day, while that for the summer day were 9%, 22.8% and 47.8%.

Scopus Crossref
View Publication
Publication Date
Mon Oct 01 2012
Journal Name
Applied Energy
Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq
...Show More Authors

View Publication
Scopus (137)
Crossref (118)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Engineering
Experimental Study of Electrical and Thermal Efficiencies of a Photovoltaic Thermal (PVT) Hybrid Solar Water Collector with and Without Glass Cover
...Show More Authors

Investigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the incre

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Mar 01 2014
Journal Name
Renewable Energy
Field study of various air based photovoltaic/thermal hybrid solar collectors
...Show More Authors

In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances o

... Show More
View Publication
Scopus (122)
Crossref (109)
Scopus Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Numerical Simulation of Thermal-Hydrodynamic Behavior within Solar Air Collector
...Show More Authors

Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 04 2023
Journal Name
Frontiers In Chemestry
Thermal and flow performance analysis of a concentrated linear Fresnel solar collector with transverse ribs
...Show More Authors

This article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000–13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain abs

... Show More
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
Performance evolution of a hybrid thermal solar air conditioning system and compare it with a traditional system according to Iraq weather
...Show More Authors

In a hybrid cooling solar thermal systems , a solar collector is used to convert solar energy into heat energy in order to super heat the refrigerant leaving the compressor, and this process helps in the transformation of refrigerant state from gaseous state to the liquid state in upper two-thirds of the condenser instead of the lower two-thirds such as in the traditional air-conditioning systems and this will reduce the energy needed to run the process of cooling .In this research two systems with a capacity of 2 tons each were used, a hybrid air-conditioning system with an evacuated tubes solar collector and a traditional air-conditioning system . The refrigerant of each type was R22.The comparison was in the amou

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 13 2025
Journal Name
Energies
Thermal and Thermo-Hydraulic Performance of a Semi-Circular Solar Air Collector Utilizing an Innovative Configuration of Metal Foams
...Show More Authors

The enhancement of the thermal and thermo-hydraulic performance of a semi-circular solar air collector (SCSAC) is numerically investigated using porous semi-circular obstacles made of metal foam with and without longitudinal porous Y-shaped fins. Two 10 and 40 PPI porous material samples are examined. Three-dimensional models are built to simulate the performance of SCSAC: model (I) with clear air passage; model (II) with only metal foam obstacles, and model (III) with metal foam obstacles as well as porous Y-fins. COMSOL Multiphysics software version 6.2 based on finite element methodology is employed. A conjugate heat transfer with a (k-ε) turbulence model is selected to simulate both heat transfer and fluid flow across the entir

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2017
Journal Name
International Journal Of Science And Research (ijsr)
Thermal Analysis of Double-Pass Solar Air Collector with Different Materials of Absorber Plate and Different Dimensions of Air Channels
...Show More Authors

Search Results at the International Journal of Science and Research (IJSR)

View Publication
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
Thermal Performance of Plastic Receiver in Solar Collector
...Show More Authors

A plastic tubes used as absorber of active flat plate solar collector (FPSC) for heating water were studied numerically and experimentally. The set-up is located in Babylon (republic of Iraq) 43.80 East longitude and 32.30 North latitude with titled of 450 toward the south direction.  The study involved three dimensions mathematical model for flat coil plastic absorber which solved by FLUENT-ANSYS-R.18 program. Experiments were conducted at outdoor conditions for clear days on January and February 2018 with various water volume flow rates namely (500, 750, 1000, 1250, and 1500 Liter per hour LPH) on each month for Reynolds number range of (1 x 104 to 5 x 104) th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
The effect of changing the evacuated tube tilt angle and the fluid of the solar collector on the performance of a hybrid solar air conditioning system
...Show More Authors

In the hybrid coolingsolar systems , a solar collectoris used to convertsolar energy intoheat sourcein order to super heat therefrigerant leave thecompressor,andthisprocess helpsin the transformation ofrefrigerant state from gaseous statetothe liquid statein upper two-thirdsof thecondenserinstead of the lower two-thirdssuchas in thetraditional air-conditioning systems and this willreduce theenergyneeded torun the process ofcooling.In this research two hybrid air-conditioning system with an evacuated tube solar collector were used, therefrigerant was R22 and the capacity was 2 tons each.The tilt angle of the evacuated tube solar collector was changed and the solar collector fluid was replaced into oil instead of water.A comparison wasi

... Show More
View Publication Preview PDF
Crossref