The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating conditions. Both computational fluid dynamic (CFD) and experimental validations proved the good accuracy of the proposed model for further applications. The present research found that the average PV cell temperature can be reduced by about 12 °C with a corresponding improvement in PCM melting duration of 127%. The addition of the metal foam is more effective at low solar radiation, ambient temperatures far below the PCM solidus temperature, and high wind speeds in nonlinear extension. With increasing of tilt angle, the PCM melting duration is linearly decreased by an average value of (13.4–25.0)% when the metal foam convective heat transfer coefficient is changed in the range of (0.5–20) W/m2.K. The present research also shows that the PCM thickness has a positive linear effect on the PCM melting duration, however, modifying the metal foam configuration from 0.5 to 20 W/m2.K has an effect on the PCM melting duration in such a way that the average PCM melting duration is doubled. This confirms the effectiveness of the inclusion of metal foam in the PV/PCM system.
Unregulated epigenetic modifications, including histone acetylation/deacetylation mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), contribute to cancer progression. HDACs, often overexpressed in cancer, downregulate tumor suppressor genes, making them crucial targets for treatment. This work aimed to develop non‐hydroxamate benzoic acid–based HDAC inhibitors (HDACi) with comparable effect to the currently four FDA‐approved HDACi, which are known for their poor solubility, poor distribution, and significant side effects. All compounds were structurally verified using FTIR, 1HNMR, 13CNMR, and mass spectrometry. In silico ana
Objectives: acute kidney injury (AKI) is a serious pathophysiology side effect of rhabdomyolysis. Inflammatory mechanisms play a role in the development of rhabdomyolysis-induced AKI. Citronellol (CT) is a naturally occurring monoterpene alcohol (3,7-Dimethyl-6-often-1-ol) found in aromatic plant species' essential oils. In this study, we explored the protective effects of Citronellol on glycerol-induced AKI.
Methods: Four groups of eight mice each (n=8) were formed by randomly dividing the animals into the groups, glycerol-induced AKI model group, low-dose CT-treated group (50mg/kg), high-dose CT-treated group (100mg/kg), and control group. The renal functions of mice from all groups were evalua
... Show MoreKarbala province regarded one part significant zones in Iraq and considered an economic resource of vegetation such as trees of fruits, sieve and other vegetation. This research aimed to utilize Normalized Difference Vegetation index (NDVI) and Subtracted (NDVI) for investigating the current vegetation cover at last four decay. The Normalized Difference Vegetation Index (NDVI) is the most extensively used satellite index of vegetation health and density. The primary goals of this research are gather a gathering of studied area (Karbala province) satellite images in sequence time for a similar region, these image captured by Landsat (TM 1985, TM 1995, ETM+ 2005 and Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such gap filli
... Show MoreA field experiment was conducted during winter, 2015-16 with the objective to investigate the effect of bread wheat cultivars (Abu-Ghraib3, Ibaa99, and Alfeteh) and seed priming 100, 100, 150 mg L-1 of benzyl adenine, salicylic acid, gibberellic acid (GA3), respectively, ethanolic extract of Salix Sp., water extract of Glycyrrhiza glabra and distilled water (control) on grain growth rate (GGR), effective filling period (EFP) and accelerating of physiological maturity. Randomized complete block design with three replicates was applied. GA3×Ibaa99 surpassed others in grain yield (7.432 tonne ha-1) when gave the highest grain weight (45.13 mg grain-1) and GGR (1.5 mg grain-1 day-1) with the fastest time to start and end EFP (5 and 34 days), w
... Show MoreThis study presents a detailed morphology and taxonomic study of Polysiphonia subtilissima collected from Abdul Rehman Goth, Karachi coast, Pakistan. Polysiphonia is a filamentous heterotrichous red algae, characterized by its branching structures and attachment mechanisms. P. subtilissima is notable for its broad salinity tolerance and wide distribution across marine and freshwater ecosystems. This research provides an in-depth examination of the internal and external structures of P. subtilissima, contributing to its systematic study and documenting its first recorded occurrence in Pakistani coastal areas, bordering the northern Arabian Sea. The findings enhance the understanding of the species taxonomy and its ecological role in
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreVarious activities taking place within the city of Baghdad have significantly contributed to organic pollution in Rivers Tigris and Diyala. The present study aimed to assess some physical, chemical and biological aspects of six sites on Rivers Tigris and Diyala as they flow through the city of Baghdad. Monthly samples were collected for the period January to December, 2005. Marked differences in the physical and chemical characteristics of water were noted between the two rivers’ sites. Average values during the study period of dissolved oxygen, biochemical oxygen demand, particulate organic matter, nitrate, phosphate and total dissolved solids for Tigris and Diyala were 7.8,4.7; 2.4,10.4; 350.1,921.4;7.8,13.9;1.2,4.8;814,2176 mg / l re
... Show MoreThree-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show More