The development of better tools for diagnosis and more accurate prognosis of cancer includes the search for biomarkers; molecules whose presence, absence or change in quantity or structure is associated with a particular tumour or prognosis/therapeutic outcome. While biomarkers need not be functionally relevant, if cell survival, then they could also provide new targets for therapeutic drugs. In recent years attention has been applied to a group of proteins known as cancer testis antigens (CT antigens) [1]. These proteins are products of genes whose expression was normally confined to the testis, yet they are expressed in tumour cells. CT genes are bound to serve a wide array of roles in the testes, which have many highly differentiated cell types and, uniquely, the specialised role of bearing a germline with cells passing through meiosis....
Ab – initio restricted Hartree - Fock method within the framework of large unit cell (LUC) formalism is used to investigate the electronic structure of Si and Ge nanocrystals. The surface and core properties are investigated. A large unit cell of 8 atoms is used in the present analysis. Cohesive energy, energy gap, conduction and valence band widths are obtained from the electronic structure calculations. The results are compared with available experimental data and theoretical results of other investigators. The calculated lattice constant is found to be slightly larger than the corresponding experimental value because we use only 8 atoms and we compared the results with that of the bulk crystals, nanoclusters are expected to have str
... Show MoreOptoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show MoreBackground: Breast cancer is the most frequently diagnosed malignancy and the second leading cause of mortality among women in Iraq forming 23% of cancer related deaths. The low survival from the disease is a direct consequence to the advanced stages at diagnoses. Aim: To document the composite stage of breast cancer among Iraqi patients at the time of diagnosis; correlating the observed findings with other clinical and pathological parameters at presentation. Patients and Methods: A retrospective study enrolling the clinical and pathological characteristics of 603 Iraqi female patients diagnosed with breast cancer. The composite stage of breast cancer was determined according to UICC TNM Classification System of Breast Cancer and the Ameri
... Show MoreIn this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the
AgInSe2 (AIS) thin films solar cell involving of n-type AgInSe2 and Si of p-type substrate by using thermal evaporation method. The influence of annealing of the preparation AgInSe2 were considered to find the best properties of solar device. Thin film AIS have been deposited under the vacuum of 1.5*10-6 Torr with (400) nm thickness at R.T and annealing temperatures (473,573) K. Polycrystalline tetragonal structure for AIS thin films from XRD and increasing of surface roughness from AFM, energy gap values decreasing with increasing annealing temperatures, all films were negative type, I-V characteristics show increasing of efficiency with increasing of annealing temperatures.
The n-type Au thin films of 500nm thickness was evaporated by thermal evaporation method on p-type silicon wafer of [111] direction to formed Au/Si heterojunction solar cell. The AC conductivity, C-V and I-V characteristics of fabricated c-Au/Si diffusion heterojunction-(HJ) solar cell, has been studied. The first methods demonstrated that the AC conductivity due to with diffusiontunneling mechanism, while the second show that, the heterojunction profile is abrupt, the heterojunction parameters have been played out, such as the depletion width, built-in voltage, and concentration. And finally the third one show that the c-Au/Si HJ has rectification properties, and the solar cell yielded an open circuit voltage of (Vic) 0.4V, short circuit c
... Show MoreHigh cost of qualifying library standard cells on silicon wafer limits the number of test circuits on the test chip. This paper proposes a technique to share common load circuits among test circuits to reduce the silicon area. By enabling the load sharing, number of transistors for the common load can be reduced significantly. Results show up to 80% reduction in silicon area due to load area reduction.
Silicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the
... Show More