The herein research was carried out in order to identified the presence of bacteria in cervix and uterine lumen in Iraqi cattle during the different estrus phase with focusing on Protus and E coli. Estrus phases were determined by the structures which found on ovary (follicular growth for pro-estrus, mature growing follicle for estrus, hemorrhagic corpus luteam for meta-estrus and active corpus luteam for di-eatrus). Forty cervical swabs (ten for each estrus phase) and forty uterine swabs (ten for each estrus phase) were taken from macroscopically healthy reproductive animals after slaughtering and cultivated on nutrient agar and blood agar, the bacterial isolation were identified with biochemical teats. The present study found that (65%) of cervical swabs were bacterial positive and the bacterial isolates were higher in the pro-estrus and meta-estrus phases 70% than estrus and diestrus 60%, the Protus spp. Could not been isolated from cervix or uterine during estrus phases, while E coli isolated during three first phases and disappear during diestrus phase, and appear as 10 single and 10 mixed isolated during follicular phase and metaestrus phase in cervical swabs. A total of five different microorganisms were isolated from cervical swabs (Escherichia coli, Streptococcus faecalis, Staphylococcus aureus, Staphylococcus hominies and Staphylococcus epidermidis) with twelve single isolation and fourteen mixed isolation. The present study found that (47.5%) of uterine swabs were bacterial positive and the bacterial isolates were higher in the pro-estrus, estrus and meta-estrus phases 50% than estrus and diestrus 40%, E coli isolated during estrus and diestrus phases only, and appear as 7 single and 2 mixed isolated during those two phases in uterine swabs. A total of five different microorganisms were isolated from uterine swabs (Escherichia coli, Streptococcus faecalis, Staphylococcus aureus, Staphylococcus hominies and Staphylococcus epidermidis) with fourteen single isolation and five mixed isolation.
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreIncorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A
... Show MoreThe present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re