This paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compared to traditional regression models: These estimates are robust to outliers and heterogeneous spatial effects and capture fully conditional distributions with respect to mean regression models. The review supports future work toward enhancing estimation approaches and possible SARQR application extensions to other fields. The spatial modeling has applicability in the research, decision-making, and profession formulation because it encourages a broader SARQR application in economic analysis, infrastructure planning, and public health policy. Future research must aim at refining estimation methods and integrating SARQR with other models of analysis to optimize its usefulness in utilizing sophisticated spatial data.
The inhibition of mild steel corrosion in 1.0M HCl by 1-propanol and the synergistic effect of potassium iodide (KI) was investigated using weight loss and polarization techniques in the temperature range (30 ‒ 50) ̊ C. A matrix of Doelhert to three factors was used as the experimental design, adopting weight loss results as it permits the use of the response surface methodology which exploited in determination of the synergistic effect as inhibition on the mild steel. The results were confirmed using electrochemical polarization measurements. Experimental results showed that the inhibition efficiency (IE%) increases with increase in concentration of inhibitor and with increasing of temperature. The addition iodide ions t
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreSamples of gasoline engine oil (SAE 5W20) that had been exposed to various oxidation times were inspected with a UV-Visible (UV-Vis) spectrophotometer to select the best wavelengths and wavelength ranges for distinguishing oxidation times. Engine oil samples were subjected to different thermal oxidation periods of 0, 24, 48, 72, 96, 120, and 144 hours, resulting in a range of total base number (TBN) levels. Each wavelength (190.5 – 849.5 nm) and selected wavelength ranges were evaluated to determine the wavelength or wavelength ranges that could best distinguish among all oxidation times. The best wavelengths and wavelength ranges were analyzed with linear regression to determine the best wavelength or range to predict oxidation t
... Show MoreWatermelon is known to be infested by multiple insect pests both simultaneously and in sequence. Interactions by pests have been shown to have positive or negative, additive or non additive, compensatory or over compensatory effects on yields. Hardly has this sort of relationship been defined for watermelon vis-à-vis insect herbivores. A 2-year, 2-season (4 trials) field experiments were laid in the Research Farm of Federal University Wukari, to investigate the interactive effects of key insect pests of watermelon on fruit yield of Watermelon in 2016 and 2017 using natural infestations. The relationship between the dominant insect pests and fruit yield were determined by correlation (r) and linear regression (simple and multiple) analys
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreAbstract
One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.
In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in
... Show MoreThis study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show More